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A fracture-mechanics model for indentation cracking in phase-transforming materials is 
developed, based on the competing interaction of the tensile residual-mismatch field and the 
compressive contact-induced transformation field. In addition to the usual subthreshold and 
well-developed cracking ranges, the model predicts the trapping of cracks at indentations, within 
the transformation zone. As an example, the model is used to describe the dependence of radial 
crack length on indentation load in a range of yttria-tetragonal zirconia polycrystals (Y-TZP), 
explicitly addressing the trapping behaviour observed in Part I. The crucial parameters of the 
model obtained from the experimental fits, the size of the transformation zone relative to the 
contact impression, b/a, and the magnitude of the transformation stress relative to the hardness, 
CrT/H, agree with independent measurements. Although applied to phase-transforming materials 
here, the principles of the model are generally applicable to systems with short-range, 
compensating stress fields competing with longer-ranged, dominant fields, leading to two 
discrete crack populations. 
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cn Contact impression crack nucleus dimension, 

Cn < S  

Stress-intensity factor weighting term, 
K = (Ha~/2 ) f  

Hardness 
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1. In t roduc t ion  
In Part I of this series, the effects of a contact-induced 
transformation zone on indentation cracks in yttria- 
doped tetragonal zirconia polycrystals (Y-TZP) were 
examined [1]. A particular effect was that radial 

cracks could be "trapped" within the zone by the 
compressive stress associated with the tetragonal-to- 
monoclinic phase transformation. Here in Part II, 
a fracture-mechanics model is developed for trapped 
cracks at indentations, and this model is used to de- 
scribe the experimental data from Part I. 

The key experimental observations to be included 
in the model are summarized in Fig. 1. Below a thresh- 
old indentation load, no radial cracks are initiated. 
Above this threshold, trapped cracks are initiated, 
although not at every impression corner and varying 
considerably in length. Above a larger, escape indenta- 
tion load, well-developed cracks are formed, although 
again not at every impression corner, but with little 
variation in length. At a very large indentation load, 
only well-developed cracks are formed. The two 
thresholds (initiation and escape), the decrease in 
the variability of the crack lengths (from trapped to 
well-developed), the overlapping cracking behaviour 
(trapped with subthreshold, and well-developed with 
trapped), the general increase in crack length with 
indentation load, and the linear indentation-load- 
crack length behaviour of the well-developed cracks 
will all be included. 

The model is based on the integration of two stress 
fields, which are assumed to maintain a geometrical 
Similarity with the indentation, to obtain two super- 
posed stress-intensity factors. The first stress-intensity 
factor is derived from the distributed, tensile, residual- 
mismatch stress and contains a maximum. A compon- 
ent of this factor is similar to that in previous models 
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Figure 1 A plot of radial crack length, l, versus indentation load, P, for a Y-TZP material (0.42 ~tm grain size). (A) Subthreshold loads, 
individual crack-length measurements. ([)Divides the indentation-load range into four regions of behaviour: subthreshold, (A) 

trapped, mixed trapped and well-developed, and well-developed only (in order of increasing P ). The micrographs show examples from each 
region. 

consider ing crack initiation at expanding inclusions 
[2-6]  and in materials with thermal-expansion aniso- 
tropy [7], in which the crack propagates in a mono- 
tonically decreasing stress field. Another component is 
similar to that in previous models of crack initiation at 
indentations [8-14],  which often contain an increas- 
ing stress at small crack lengths. The second 
stress-intensity factor is derived from the localized, 
compressive, transformation stress, and contains 
a minimum. Tl'ie superposition of the two stress- 
intensity factors leads to a "double-humped" net 
stress-intensity factor, similar to that describing ring 
and cone cracks at Hertzian contacts [15-17]. 

We begin with a description of the indentation 
stress fields and the derivation of the residual and 
transformation stress-intensity factors. This is fol- 
lowed by a general description of the resulting initia- 
tion and trapping mechanics for the simple case of 
cracks with invariant geometry propagating in mater- 
ials with invariant toughness. Modifications to these 
mechanics are then made for a more realistic approx- 
imation for transformation-toughening materials, in 
which the crack geometry and material toughness 
change as the  crack extends across the transforma- 
tion-zone boundary. The next sections describe the 
procedure used to fit the model to the data, followed 
by the resulting fits and parameter evaluations. The 

discussion centres on the use of the model for descrip- 
tion of other trapped-crack systems and in materials 
optimization. 

2. Stress fields and stress-intensity 
factors 

2.1. Indentation stress field 
Fig. 2 is a schematic diagram of the residual contact 
impression of an indentation, the associated contact- 
induced transformation zone, and their respective 
stress fields. The semi-diagonal of the contact impres- 
sion, a, is a measure of the scale of the plastic-deforma- 
tion zone, and is related to the peak contact load, P, 
and the hardness, H (the projected contact stress), by 

a = ( P / 2 / 4 )  1/2 (1) 

The contact-induced transformation zone extends 
a characteristic distance, b, beyond the impression 
corner. This extent is determined by a compromise 
between the chemical-energy decrease associated with 
the tetragonal-to-monoclinic phase transformation 
and surface- and strain-energy increases associated 
with the expanding monoclinic particles in the sur- 
rounding tetragonal matrix L18]. Although the local 
radius of the transformation zone shows some varia- 
bility, reflecting local variations in the metastability of 
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Figure 2 A schematic diagram of the indentation system showing 
the dimensions of the plastic-deformation and phase-transforma- 
tion zones, the behaviour of their associated stress fields, and the 
radial-crack dimensions. 

the monoclinic phase (see Fig. 2 in Part [-1]), the 
average radius is well-defined for a given material and 
maintains geometrical similarity with the contact im- 
pression [19] such that the ratio b/a is invariant with 
indentation load. 

The stress field arising from the strain mismatch of 
the plastic-deformation zone embedded in the sur- 
rounding matrix is composed of two components. 
Inside the zone the circumferential stress acting on 
a prospective radial-crack plane is predominantly 
compressive. However, close to the zone boundary the 
stress becomes tensile [-8, 10, 12, 14], and reaches 
a maximum value at the boundary. Similar to pre- 
vious works [-8, 10, 14] this component is modelled as 
a linear increase 

c~r(r) = erR(r/s), 0 <~ r <~ s (2a) 

where s is the length scale within the deformation zone 
over which the tensile stress acts, erR is the maximum 
stress at the zone boundary, and the origin of the 
co-ordinate system, r = 0, is fixed at the edge of the 
tensile region, see Fig. 2 (rather than at the deforma- 
tion-zone boundary [8, 9, 13]). The choice of origin 
reflects the supposition that radial cracks are initiated 
from shear-fault nuclei located within the deformation 
zone [-9, 14, 20-24] beginning at this origin. (The 
nuclei and the ensuing radial cracks may also be 
stabilized and propagated by shear stresses within the 
zone [9, 11, 13, 14, 22, 23], but these effects are neglect- 
ed here.) The tensile region within the zone is also 
assumed to maintain geometrical similarity, such that 

21 94 

the ratio s/a is constant. Outside the plastic-deforma- 
tion zone, the stress field is modelled as that belonging 
to an expanding spherical cavity, and decreases with 
distance from the zone edge according to [4, 12, 14] 

err(r) = erR(sit)3, r > s (2b) 

The stress err will be related to the hardness. 
The stress field arising from the transformation 

zone is modelled as a simple circular step function 

ert(r) = erT s < r < ~ s + b  

= 0  0 ~ < r ~ < s a n d r > s + b  (3) 

Observations of surface uplift and measurements of 
the fraction of transformed monoclinic phase [1, 19, 
25] suggest that this is not a bad approximation, 
although there are undoubtedly drop-off effects at the 
transformation-zone boundary and some transforma- 
tion stresses exerted within the deformation zone. As 
s and b maintain geometrical similarity, so do the 
residual and transformation stress fields. 

Also shown in Fig. 2 is the surface trace of a radial 
crack with its associated crack transformation zone. 
The radial-crack length is conventionally measured 
from the impression corner as I. However, in this case, 
an extended crack system is used, measured from the 
nucleus origin inside the deformation zone, with a 
total length of c = l + s. Figl 3 is an optical micro- 
graph of the radial system, showing the crack origin 
a distance s inside the deformation zone. Radial cracks 
will only be regarded as being initiated for l > 0, i.e. 
for c > s, although calculations of the stress-intensity 
factors driving the crack are made for all c > 0. (Some 
works have set c = l + a, and performed stress- 
intensity-factor calculations for c > a - s [11, 12, 14].) 
The Nomenclature provides a definition of all the 
parameters used here. 

Fractographic observations and sectioning experi- 
ments suggest that the surface traces are those of 
shallow cracks extending predominantly along the 
surface, remaining disconnected under the contact ira- 

Figure 3 An optical micrograph (in reflected light) of a broken 
indentation in a Y - T Z P  material (0.42 ~tm grain size). The unbro- 
ken radial crack clearly nucleates within the plastic deformation 
zone near the contact impression corner and extends a distance 
S relative to the impression dimension before initiating. Measure- 
ments of S provide an estimation of the size of the tensile region 
within the deformation zone. 



pression in the bulk of the material (see the references 
in [1] and [-26, 27]). An additional observation, cru- 
cial to the modelling here, is that cracking behaviour 
across the contact impression is frequently dissimilar; 
that is, one crack is trapped while the other is well- 
developed, or one crack is subthreshold and the other 
is trapped. Such observations suggest that the two 
opposing surface traces are not those of a single crack 
(although their behaviour might be coupled under 
subsequent loadings [28]). Hence, the surface traces 
are taken to be representative of essentially linear 
cracks, extending to a depth approximately equal to 
that of the deformation zone. 

The crack-transformation zone for the well- 
developed radial crack in Fig. 2 is shown with con- 
stant width, implying that the transformation 
toughening for such a crack has saturated to the 
steady-state level [18]. Toughness, or fracture-resist- 
ance aspects of this problem will be considered in 
detail later. The following sections use the stress states 
described here to develop the driving forces for frac- 
ture, the residual and transformation stress-intensity 
factors, Kr and Kt,  respectively. 

2.2. Residual  s t r e s s - in t ens i ty  fac tor  
The general equation used for calculating the stress- 
intensity factors from the stress distributions was 

__ 21]/cl/2 f c  o'(r)dr 
K(c) /1; w0 ( c2 --  r2) 1/2 (4) 

where the kernel function for a linear crack has been 
used [29], but a geometrical prefactor of O/n 1/2 has 
been included. The difference of this factor from unity 
accounts for the true geometry of the radial cracks and 
free-surface effects. 

Conventional indentation-fracture mechanics uses 
the stress field outside the plastic-deformation zone, 
given by Equation 2b, in Equation 4 to generate 
a residual stress-intensity factor, given in this case by 
K ~ Taking advantage of the assumed geometrical 
similarity of the problem, normalized variables are set 
as 

9 = r/a 

C = c/a (5) 

S = s / a  

such that K r  ~ is given by a dimensionless integral 

Kouter = __2q/CyROU2C1/2S3 f ;  do 
g p3(C2 - 102) 2/2 

(C > S) (6) 

The residual-stress amplitude is conveniently reduced 
to a dimensionless variable, czR, via the hardness: 

err = ccRH (7) 

Completing the integral in Equation 6 thence gives the 
requisite stress-intensity factor as 

K~ = (Hal/2)f~ ~R, S) (8a) 

which is the product of a term controlling the scale of 
the event, (Hal~2), and a scale-invariant, crack-length 

dependent, weighting term 

f r  outer -- 2q/~R C1/283 ~( C2 ~ 82) 1'2 
It L 2C282 

+ 2C  51n S 

C > S; (8b) 

this equation includes the material and geometrical 
parameters t), % and S. The large-crack asymptotic 
limit of this weighting term is 

~RS fout,r + as C --+ oe (9) 
rcCt/2 

which contains the familiar C-t/2-dependence for 
a line-loaded crack [29]. 

The second component of the residual stress-inten- 
sity factor, K i, . . . .  , is obtained by inserting Equation 2a 
in Equation 4 to gain 

.... 2~0 C1/2 ~c p dp 
K ir = --re (YRal/2-S- J o  ( C2 -- P2) 2/2 

(c > o) (lO) 

using the normalized variables as before. On integra- 
tion this gives 

Kir . . . .  = ttHaU2~ri)Jr . . . .  teC ,0~ R, S x* (lla) 

where the weighting term is 

2@~R C 3/2 
f i  r . . . . .  (0 ~ C ~ S)  

n S 

2~uR 0 / 2  
- rc 8 [1 - (1 - 82/C2) 1/23 

( C > S )  (llb) 

The large-crack asymptotic limit of this weighting 
term is identical to that forf~ 

ql~S 
f i  r . . . .  ~ rtC1/2 as C ~ oc (12) 

The small-crack behaviour, Equation l lb, is more 
destabilizing than that of the familiar uniform stress 
(C 3/2 compared with C 1/2 [29]) - a reflection of the 
increasing stress in this region. 

The total residual stress-intensity factor is given by 
the sum of the inner and outer terms, 

Kr = (Hal/2)fdC, (XR, S) (13a) 

where the overall weighting term is given by 

fr = fir . . . .  4_ fouter (13b) 

Fig. 4 plots the residual weighting term, showing the 
individual components and the asymptotic limits, 
using ~R = 0.1, S = 0.3 and ~ = 3.5. 

2 .3 .  T r a n s f o r m a t i o n  s t r e s s - i n t e n s i t y  f a c t o r  
The transformation stress-intensity factor, Kt,  is ob- 
tained by using Equation 3 in Equation 4 to give 

Kt 24 Crral/2 C1/2 f c  d 9 
- n (C 2 _ 02)2/2 (14) 
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Figure 4 Plot of the dimensionless stress-intensity factor weighting 
terms versus the normalized crack length, C. The residual term,f, is 
positive with C 3/2 and C-1/2 asymptotic dependencies at small and 
large crack lengths, respectively. (The components of the residual 
term, fifl,~ and f~u~r, deriving from residual-stress components 
inside and outside the plastic-deformation zone are shown by the 
dashed lines.) The transformation term, ft, is negative and has 
- C a/2 asymptotic dependence at large crack lengths. 

compressive, and hence 0~T, and t h u s f  and Kt, are all 
negative. Fig. 4 is a plot of this weighting term show- 
ing the asymptotic limit, and using 0tT = -- 0.01 and 
B =  1.0. 

The total stress-intensity factor is the sum of the 
residual and transformation terms 

K(c) = K,(c) + Kt(c) (19a) 

such that the normalized form is 

K(C) - -  Kr(C) + Kt(C) 

= (Hal/2)f(C,  o~R, r S, B) (19b) 

where the full weighting term is a similar sum 

f (C )  = f~(C, (~R, S) Jr if(C, (~T, S, B) ( 1 9 c )  

Noting that S and B are invariant with P, the dimen- 
sionless weighting term, f is also seen to be a geomet- 
rically-similar function. 

3. General init iation m e c h a n i c s  
The stress-intensity factor of Equation 19 allows for 
a full description of the cracking behaviour as a func- 
tion of the indentation load. This section considers 
initiation, trapping, escape and well developed crack- 
ing phenomena for materials in which the crack 
geometry, characterized by 4, and the toughness, T ,  
are invariant with the crack length, c, providing the 
background mechanics for the following section where 
these constraints are lifted. 

using Equation 5. Normalizing the transformation- 
zone dimension and the transformation stress as 

B = b/a (15) 

and 

(3" T = ~T H (16) 

gives the integrated stress-intensity factor as 

g t  = (Hal /2) f (C,  ~T,S ,B)  (17a) 

with a weighting term of 

= o (o c <<. s )  

2ql~Tc1/2Ilt/2--% s in -1  ( S ) l  

x ( S < C < ~ S + B )  

_ 2 ~ W c 1 / 2 I s i  n ~  , ( S  c B )  

sin-1 ( S ) I  ( C > S + B )  (17b) 

The large-crack asymptotic limit of this weighting 
term is 

2qlOtxB as C ~ ~ (18) 
f --* rcCi/2 

It should be noted that the transformation stress is 

3.1. Initiation 
Consider a radial-crack nucleus extending from the 
origin within the plastic-deformation zone to a char- 
acteristic length c. ~< s (Fig. 2). The nucleus is stabil- 
ized by shear processes within the zone such that it 
maintains geometrical similarity with the contact im- 
pression 

C, = c,/a (20) 

where the normalized nucleus dimension, Cn, is a con- 
stant. Although the overall geometrical similarity en- 
forces a fixed tensile stress profile over the nucleus 
(Equation 2a), the stress-intensity factor on the nu- 
cleus, increases with increasing impression size, and 
therefore with indentation load (Equation 11). 

For K(Cn)<  T, the nucleus remains metastably 
trapped in the zone. For K(Cn) = T, the nucleus is in 
a position of unstable equilibrium (dK/dc > dT/dc), 
and it initiates into a crack. The equilibrium condition 
is (from Equation 19) 

(Ha~/12)f.1 = T (21) 

such that the critical impression size and indentation 
load (from Equation 1) are given by 

a . t  = ( T/H)2 f . 2 

P,1 = 2 ( T 4 / H 3 ) f  ,~  (22) 

yielding the familiar dependencies for geometrically 
similar problems [8-14] of a , t  and P , t  on the mater- 
ial parameters T and H, and on the ,geometrical 
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weighting term 

f * l  = f ( C n )  = fi, . . . .  (C,) (23) 

from Equations 13 and 19. 
Fig. 5 is a plot of the normalized stress-intensity 

factor K I T  as a function of the normalized crack 
length, C, at the initiation condition a = a .  t, using the 
variables used in Fig. 4 and using C, = 0.25. The 
double-humped nature of the stress-intensity factor 
with two destabilizing-to,stabilizing sequences is ap- 
parent. The initiation condition is fulfilled as the first 
destabilizing branch intersects the toughness line 
(K /T  = 1) at the nucleus crack length (C = C,). The 
double-logarithmic plotting scheme used in Fig. 5 
shows the asymptotic responses of the first destabiliz- 
ing and second stabilizing branches as straight lines 
with gradients of 3/2 and - 1/2, respectively, follow- 
ing Equation 9, 11, 12 and 18. Fig. 6 is a plot of the 
stress-intensity factor for a range of a-values (an ad- 
vantage of the plott ing scheme is that changes in 
a appear as simple vertical translations of the curve in 
Fig. 5). The curve labelled a , t  corresponds to the 
initiation conditions, with the equilibrium instability 
point indicated by the open circle. The curve labelled 
ao corresponds to the metastably trapped, subthresh- 
old condition. 
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Figure 6 A plot of normalized stress-intensity factor, K/T, versus 
normalized crack length, C, for a trapped rgdial-crack system at 
a range of indentation-impression sizes: ao (subthreshold) < a,~ 
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(large) cracks. 

3.2. Trapping 
For indentation loads P >~ P , I ,  the initiated cracks 
may be trapped in the transformation zone under 
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Figure 5 A plot of normalized stress-intensity factor KIT versus 
normalized crack length, C, for a trapped radial-crack system at 
initiation (K = T a n d  dK/dC > dT/dC at C = Cn). ( - - )  The to- 
tal stress-intensity factor, and (- -) the initiating (residual) and 
trapping (transformation) components. 

conditions of stable equilibrium (dK/dc < dT/dc). 
There is a minimum trapped crack length 

Ct = ct/a,1 = (lt 4- s)/a,1 

= Lt  + S (24) 

such that K(G )  = T and thus 

(Hal,/~a)fmin = V (25) 

where 

fni. = f (Ct)  (26) 

This stable equilibrium point is indicated by the open 
square in Fig. 5 and on the curve labelled a.x in 
Fig. 6. Greater trapped crack lengths may be gener- 
ated, as shown by the curve labelled al. 

3.3. Escape 
At C = S + B, the stress-intensity factor abruptly 
changes from stabilizing to destabilizing. Hence the 
criterion K(S + B) = T defines an unstable equilib- 
rium at which cracks can escape from the transforma- 
tion zone. Imposing the equilibrium condition at this 
point yields 

(Ha~/z2)f,2 : T (27) 

where the critical impression size and indentation load 
are now 

a,2 = (T/H)2 f ,  ff 

P , 2  = 2 ( r 4 / H 3 ) f ,  4 (28) 

with material and geometrical dependencies as before 
(Equation 22) for a,2 and P,2,  and the weighting 
term is 

f .2  = f ( S  + B) (29) 
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The indentation load P , 2  is the upper bound for the 
existence of trapped cracks, and hence P,1 ~< P < P,2 
is the trapping-load range with a,~ ~< a < a,2 the 
conjugate impression-size range. The corresponding 
range of trapped crack lengths is Ct ~< C < (S + B); 
this is indicated by the left hatched band in Fig. 6. The 
unstable equilibrium point for escape is marked by the 
closed circle on the curve labelled a,2. 

3.4. Wel l-developed cracks 
For P > /P .2 ,  the escaped cracks are well-developed in 
stable equilibrium outside the transformation zone. 
There is a minimum well-developed crack length given 
by C w > ( S + B )  such that K(Cw)--(Ha~/22) 
f(Cw) = T; this is indicated by the solid square on the 
curve labelled a.2 in Fig. 6. Greater well-developed 
crack lengths may be generated, as shown by the curve 
labelled a2, and the range of well-developed cracks, 
C ~> Cw, is indicated by the right hatched band. 

For P >> P.z the indentation crack length isgiven 
by 

(Hat/Z)fma x = T (30) 

wherefmax is evaluated in the limit C -~ oo, such that 

fmax 2~ ( O~RS (~R S ~TB~ (31) 
-- ~ \ 2 C  1/2 + ~ + C1/2) 

from Equations 9, 12 and 18. In this limit 
C = L + S ~ L, so that denormalizing the crack 
length yields the experimentally observed linear rela- 
tionship between the indentation load and the radial 
crack length for well-developed cracks: 

2(T2/H) 
P/l = (2~/=)2(czRS + ~TB) 2 (32) 

using Equation 1. In the usual description of Palm- 
qvist, or radial, cracks [1, 17, 30, 31], the mechanical 
energy release rate ~ = ~P/I. Using 9q = K2/E in 
Equation 32 provides ~3=2(H/E)(~I/~)z(~RS+ 
2CZTB)Z.) 

4. Init iat ion mechanics for t ransforming 
materials 

In order to fit the experimental observations, the in- 
itiation mechanics described in the previous section 
were modified in two ways. The first modification 
took into account the transformation toughening in 
these materials, In the transformation zone a large 
number of tetragonal-phase grains were transformed 
to monoclinic-phase in order to accommodate the 
indentation contact strain. These grains were therefore 
not available for stress-induced transformation to give 
rise to toughening as a crack advanced through the 
zone. Outside the zone, many more grains were avail- 
able for transformation toughening, and hence there 
was an increase in the toughness of the material 
across the transformation-zone boundary. This was 
modelled here as a simple step-function increase 

T = T1 ( C < ( S + B ) )  

= T 2 (C > (S + B)  (33) 
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T-curve (or R-curve) effects (arising from a transient in 
the crack-tip transformation zone) were ignored. 
Measurements in Y - T Z P  materials suggest that the 
T-curves are extremely steep [32] and saturate at 
crack lengths considerably less than the distance the 
well-developed cracks extend beyond the zone bound- 
ary. However, as alluded to earlier, close observation 
[1] suggests that there is not a sharp boundary for the 
zone of strain-induced transformation. Hence, the in- 
crease in toughness from T1 to Tz was probably more 
gradual than the step function used. 

The second modification took into account the 
change in geometry from trapped to well-developed 
cracks [28]. I n  the trapped state, the indentation 
cracks were considerably more shallow than those in 
the well-developed state. To account for the decreased 
mechanical-energy release rate for trapped and in- 
itiated cracks, relative to the well-developed cracks, 
a reduced geometry factor was used in this region 

= qJl (C<~(S+B))  

= ~2 = 2~1 ( C > ( S + B ) )  (34) 

with an arbitrary factor-of-two increase across the 
transformation-zone boundary. Once again, the ac- 
tual change in crack morphology was probably more 
gradual at C ~ S + B than the step function used'here. 

Fig. 7 is a plot of the normalized stress-intensity 
factor, K/TI, as a function of normalized crack length, 
C. The a-values and symbols are as in Fig. 6. Com- 
parison with Fig. 6 shows that the effect of the ge- 
ometry modification is to deepen the trapping-well 
between the initiation and well-developed branches of 
the curve, particularly in comparison to the toughness 
increase at the zone boundary. However, there is 
a trade-off between T and ~ in determining the loads 
for both initiation (Equations 11 and 22) and escape 
(Equations 17 and 28), and the lengths of both trapped 
(Equations 13 and 25) and well-developed (Equations 

Co S S + B  31 1.~ ' '  

S 7:/7- ,.~ 2 1 

> .  

E 

0.3 

i o V// 
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Normalized crack length, C 

Figure 7 A plot of normalized stress-intensity factor, K/Tt, versus 
normalized crack length, C, for a trapped radial-crack system in 
a transforming material in which the crack geometry and material 
toughness increase across the transformation-zone boundary. The 
notation is the same as in Fig. 6. Parameters are taken from Tables 
I and II for the 0.36 lain grain-size material. 



17 and 32) cracks. Hence, the combined effect of the 
modifications is to decouple the initiation and escape 
events and their associated minimum crack lengths, 
without necessarily altering the ratios P,1/P,2 or 
Ct/Cw. (For  T2 = 2T1, the ratios are unaltered.) 

5. Experimental fitting procedure 
In order to fit the model to experimental data on 
Y-TZP,  the parameters ~T, B, 7"1, and Cn, were deter- 
mined by fitting to the experimental variables P/l, 
P,2,  P ,  z and It, as described below. Other parameters 
were determined by experimental observation. 

The parameter S = s/a was determined from obser- 
vations of approximately ten 300 N indentations in 
each material, s was taken to be the largest observed 
extent of a radial crack within the plastic deformation 
zone (see Figs 2 and 3). The hardness,/4, was taken 
from measurements for each material [1], Similarly, 
the toughness outside the transformation zone, T2, 
was set as the measured steady-state Too-value for 
each material [1]. Table I gives the S, /4 and Ta- 
values. The parameter ~R was set for all materials at 
0.1, consistent with recent evaluations on a range of 
glasses [14] (previous estimations for a variety of 
materials are in the range 0.l to 0.22 [8-13]). 

The sT and B-parameters were determined by fit- 
ting to the well-developed crack response, P/l, and the 
escape load P ,z .  Inverting Equations 28 and 32 gives 

s , 2  = S ,2 (S ,  BI = - -12(r lI-I3)] 'j" 

L v,2 J 

[2(VZz/H)ll/Z (35) 
(242/g)(0tRS -'k ~T B)  = L J 

Simultaneous solution of these equations yielded 
ST and B. 

The T~-parameter was determined from the min- 
imum trapped crack length, It, and the initiation load, 
P,1.  Combining Equations 1 and 25 and inverting 
gives the following equation 

T1 = f m i ~ ( 2 / H 3 p , 1 )  1/4 (36) 

and T~, using ~T from above. 
The Cn-parameter was determined from the initia- 

tion load, P , t -  Combining Equations 11, 22 and 23 
gives 

Cn = (nS/241~R) 2/3 (2T~/H3p,1) 1/6 (37) 

u s i n g  T 1 from above. 

The values of the experimental variables were 
chosen so as to yield upper and lower bounds of the 
predicted radial crack length at a given indentation 
load. The upper-bound (lower-bound) value for P/l 
was taken as the least (greatest) value that allowed the 
model to predict an escaped crack length. The upper- 
bound (lower-bound) value for P,2 was taken as the 
smallest (largest) indentation load at which a trapped 
crack was observed. The upper-bound (lower-bound) 
value for It was taken as the longest (shortest) observed 
trapped crack length at P = P,1.  A common value of 
P,~ for both bounds was taken as the smallest inden- 
tation load at which a (trapped) crack was observed. 
Fig. 8 illustrates the ranges of the bounding 
parameters. The mean response for a material was 
determined using the geometric means of the bound- 
ing-values. Table I gives the geometric means of the 
experimental indentation parameters P/l, P,z, P,~, 
and lt. 

Consideration of the above shows that there re- 
mains only one arbitrary adjustable parameter - the 
geometry parameter 42 (and thus 41). In determining 
the model parameters from the experimental data, the 
greatest value of 42 was chosen subject to two con- 
straints: the transformation stress cannot be tensile, 
i.e. sT < 0, and the toughness in the transformation 
zone cannot be less than that of untoughened ZrO2, 
i.e. 7'1 > 2 M P a m  I/z [18]. 

Once the parameters were determined, the l(P) 
response was calculated by numerically searching 
for the stable crack length at a given indentation 
load. For P < P,1,  no cracks were initiated. For 
P,~ ~< P < P,2,  the search was conducted between 
I t and b. For P ~> P,2,  the search was conducted for 
crack lengths greater than b. 

6. Results 
Figs 9 to 12 show the experimental l versus P behavi- 
our for the four materials considered in Part I. The 
solid symbols represent indentation loads at which no 
cracks were observed (i.e. subthreshold indentations). 
The open symbols represent individual crack-length 
measurements. The upper and lower solid lines show 
the fitted upper and lower bounds, respectively. The 
central solid line is the mean response. Table II gives 
the corresponding values of the fitted parameters B, 
~zT, T1, C, and 42. As an example, Fig. 13 is a plot of 
the residual and transformation stress distributions 
using the parameters from Table I1 and Equations 

TAB LE I Experimental fracture and deformation-parameters of Y-TZP materials 

Grain size, X (/am) 

0.27 • 0.08 0.36 • 0.13 0.42 + 0.15 0.70 • 0.30 

Steady-state toughness, T2 (MPa m l/z) 4.2 • 0.2 4.9 • 0.1 
Hardness, H (GPa) 12.3 • 0.5 13.5 • 0.3 
Contact-impression tensile-zone size, S 0.266 0.267 
Minimum trapped-crack length, It (/am) 9.6 3.4 
Threshold indentation load, P,1 (N) 40 20 
Escape indentation load, P,2 (N) 53 77 
Well-developed crack parameter, P/l (N/am-l )  1.55 1.47 

5,4 • 
13,4 • 0.4 
0.267 
2.6 

30 
141 

1.54 

5.9 + 0.3 
12.4 • 0.3 
0.294 
1.4 

20 
245 

1.82 
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Figure 8 A plot of radial-crack length, l, versus indentation load, P, 
for a Y-TZP material (0.36 pm grain size). ( t )  Subthreshold loads, 
and (~ )  individual crack-length measurements. The solid lines in- 
dicate the bounds on the experimental variables used in fitting the 
model. 
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Figure 9 A plot of the radial-crack length, l, versus the indentation 
load, P, for a Y-TZP material (0.27 pm grain size). The upper and 
lower fine solid lines indicate the bounds of the predicted response 
from the indentation trapping model. The central bold solid line is 
the mean response. Key as defined in Fig. 1. 

1-3. The inferred transformation stress for all the 
materials was of the order of 100 MPa,  suggesting 
a volume fraction of monoclinic phase in the trans- 
formation zone of ~ 1%. This value compares with 
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v v v v ~  

101 10 2 

Indentation load, P (N) 

10 3 

Figure 10 A plot of radial-crack length, l, versus indentation load, 
P, for a Y - T Z P  material (0.36 gm grain size). Key as defined as in 
Fig. 8. 
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Figure 11 A plot of radial-crack length, l, versus indentation load, 
P., for a Y-TZP material (0.42 gm grain size). Key as defined in 
Fig. 1. 

T A B L E  II  Indentation crack initiation and trapping parameters of Y-TZP materials 

Grain size, X (gm) 

0.27 4- 0.08 0.36 + 0.13 0.42 4- 0.15 0.70 +_ 0.30 

Transformation-zone dimension, B 0.428 
Transformation stress coefficient, ~r - 0.009 
Transformation-zone toughness, T1 (MPa m 1/2) 2.68 
Contact-impression crack-nucleus dimension, C, 0.211 
Well-developed crack geometry factor, qt 2 2.95 

0.526 0.727 0.775 
- 0.010 - 0.007 - 0.007 

3.58 4.76 4.21 
0.241 0.259 0.294 
3.60 3.90 3.70 
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Figure 12 A plot of radial-crack length, l, versus indentation load, 
P, for a Y - T Z P  material (0.70 gm grain size). ( I )  Subthreshold 
loads, and (Q) individual crack-length measurements. 
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Figure 13 A plot of stress versus normalized radial-crack co- 
ordinate, P, for a Y - T Z P  material (0.36 p.m grain size). The top axis 
gives the distance from the indentation centre for a 100 N indenta- 
tion. 

measurements by Raman spectroscopy of 2-5% in 
a 3 Y - T Z P  [25]. 

Fig. 14 compares the mean l(P) responses of the 
four materials. It is immediately apparent that the 
threshold indentation loads are similar but the inden- 
tation loads for cracks to escape to well-developed 
form increase with increasing grain size. This effect 
leads to a greater range of indentation loads in the 
large-grained materials over which cracks remain 
trapped. 

In addition, there is a greater range of trapped- 
crack lengths about the mean response in the larger- 
grained materials. This latter effect is demonstrated in 
Fig. 15, which is a plot of the size of the transforma- 
tion zone, B, and the minimum trapped-crack length, 
L~, as a function of grain size. The symbols represent 
the mean responses and the error bars the upper and 
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Figure 14 A composite plot of the mean radial-crack length re- 
sponse versus indentation load for Y-TZP materials with a range of 
grain sizes. As grain size increases, the indentation load for radial 
cracks to escape to well-developed form increases, thereby increas- 
ing the trapping-load range. 
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Figure 15 A plot of transformation zone size, B, and minimum 
trapped radial-crack length, L ,  as a function of grain size, X, for 
Y - T Z P  materials. The divergence of these two parameters, empha- 
sized by the hatched region, demonstrates the increasing range of 
trapped crack lengths with grain size. 

lower bound values. The mean value of B increases 
with grain size, and the upper and lower bounds 
diverge. Conversely, the mean value of L t decreases 
with grain size, and the bounds converge. The hatched 
region encompassing the lower bounds of Lt and the 
upper bounds of B represents the total range of trap- 
ped-crack lengths. This range diverges significantly 
with grain size, reflecting the increasing diversity with 
grain size in the length of the trapped cracks relative to 
the impression size, a. 

Fig. 16 is an illustration of the diversity of the 
transformation-zone dimension and the trapped- 
crack lengths using these data. The hatched regions 
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Figure 16 Schematic scale diagrams of indentations in Y-TZP ma- 
terials showing the variability in the contact-induced transforma- 
tion-zone radii (hatched regions) and the trapped-radial-crack 
lengths (solid lines). For grain sizes, X, of: (a) 0.27 pm, (b) 0.36 gm, 
(c) 0.42 gm, and (d) 0.70 pm. 

Figure 17 Schematic scale diagrams of indentations in Y-TZP ma- 
terials showing the variability in the contact-induced transforma- 
tion-zone radii (hatched regions) and the escaped radial-crack 
lengths (solid lines). 

represent the contact-induced transformation zones 
(from random choices within the upper and lower 
bounds in 10 ~ increments around the contact im- 
pression). The vertical solid lines represent the 
upper-bound lengths of the immediately post- 
threshold trapped cracks, and the horizontal lines 
represent the lower-bound lengths. Increases in the 
indentation load above the threshold configurations 
lead to trapped cracks between these lengths and the 
transformation-zone boundary. It is apparent that 
there is the possibility of greater indentation-to-inden- 
tation variability in the trapped-crack lengths with the 
larger-grain-size materials. 

In comparison, there was very little indentation- 
to-indentation variability in the well-developed crack 
lengths. Fig. 17 is an illustration of the immediately 
post-escape, well-developed, crack configurations, 
with vertical and horizontal lines representing the 
upper and lower bounds as in Fig. 16. Increases in 
indentation load above these escape configurations 
lead to increases in the well-developed crack lengths 
(relative to the indentation dimensions) within the 
small limits set by these bounds. This reduced varia- 
bility in the well-developed crack lengths extended to 
all the materials. 

7. Discussion 
The fracture-mechanics model developed here is 
clearly very capable of describing the variation of 
radial-crack lengths with indentation load in Y - T Z P  
materials. While "goodness-of-fit" between the predic- 
tions and the experimental data (Figs 9-12) is no 
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proof of the model, some of the parameters inferred 
from the model are in agreement with independent 
observations. 

As noted, the magnitudes of the transformation 
stresses, ~T, imply very small volume fractions of 
monoclinic phase in the contact-induced transforma- 
tion zones in these materials. The low values of the 
transformed fractions hold the key to the ambiguity 
highlighted in Part I in attempts at indentation tough- 
ness measurements. Because the transformed fraction 
is small, the associated surface uplift is small (in most 
cases indiscernible), and hence it is not apparent that 
conventional indentation analyses will be inapplicable 
(especially as the cracks are usually very straight and 
visible). Thus, the distinction between trapped and 
well-developed cracks is not made, and both random 
(arising from the variability in the trapped crack 
lengths, e.g. see Fig. 16) and systematic (arising from 
an overestimate of the residual stress field acting on 
the well-developed cracks, e.g. see Fig. 13) errors are 
made. These errors have not extended to C e - T Z P  and 
Mg-PSZ, as the transformed fraction is larger in these 
materials, leading to a greater surface uplift and obvi- 
ous distortions of the residual field, and thus indenta- 
tion toughness measurements are not even attempted. 

The transformation-zone sizes inferred from the 
model also agree with other measurements. The extent 
of the surface uplift surrounding the contact impres- 
sion in Fig. 2 in Part  I provides a measure of the 
transformation zone and gives 0.64 < B < 1.24 for the 
0.70 pm grain-size material. This agrees with the 
bounds of 0.30 < B < 1.23 inferred from the fit to the 
crack-length data. 



To extend the comparison to other ZrO2 materials, 
and to place the current materials in context, Fig. 18 is 
a plot of the transformation-zone size, B, against 
steady-state toughness Too for this and other Y-TZP 
materials [1, 19, 25], Ce-TZP materials [25, 33, 34], 
and Mg-PSZ materials [35]. (B-values were deter- 
mined from measurements of the surface uplift from 
published micrographs, and To-values from reported 
large crack measurements.) The open symbols are the 
direct observation measurements, and the solid line is 
an empirical linear fit to these data. There is an obvi- 
ous increase in the extent of contact-induced trans- 
formation with steady-state toughness. Extrapolation 
of the data to the zero-transformation zone, B = 0, 
yields a To value of ~ 2-3 M P a m  1/2 - very close to 
the lower-bound values observed for untoughened 
ZrOz [18] (and close to the lower bound for T1 im- 
posed here). As both the extent of the transformation 
zone and the toughening increment depend on the 
metastability or "transformability" of the tetragonal 
phase it is not surprising that they show the correla- 
tion in Fig. 18. The solid symbols are the zone sizes 
inferred from the fits, and they are obviously in agree- 
ment with the other measurements. (Extremely tough 
Mg-PSZ materials [36-38] do not follow the trend 
shown in Fig. 18, and they exhibit anomalously small 
transformation zones.) 

Observations of fatigue in Mg-PSZ [39] show that 
crack motion is greatly affected by underloads or 
overloads in the cyclic loading. In particular, over- 
loads cause significant decreases in crack velocity, 
suggesting that the cracks are "trapped" in a locally 
enhanced transformation zone and have difficulty "es- 
caping" across the enhanced zone boundary, similar 
to the observations here. The implication is that sub- 
sequently stressed cracks in ZrO2 materials, after gen- 
eration by a sharp contact, will still retain the effects of 

the contact-induced transformation field, trapping the 
cracks. 

If the strength-controlling flaws in a ZrO2 compon- 
ent are cracks arising at sharp contacts, it is probable 
that cracks trapped in the compressive transformation 
zone will lead to greater strengths. A clear implication 
from the model is that in order to maximize trapping, 
aT or B should be maximized. Fig. 18 suggests that an 
indication of the ability of a ZrO2 material to trap 
cracks, and therefore exhibit less strength degradation 
by contact flaws, might be a large steady-state tough- 
ness. However, the greater variability of the degree of 
trapping (as indicated by the lengths of the trapped 
cracks) in materials with large transformation zones 
implies a trade-off in this regard - decreased strength 
degradation for a given contact size might be 
associated with increased strength variability at that 
contact. (That is, large toughnesses imply large trans- 
formation zones, which in turn imply greater strengths 
that have a lot of scatter.) 

In closing, it should be noted that the model de- 
veloped here is easily extended to other geometries 
(e.g. that of circular cracks), to modifications of the 
stress fields (e.g. extending the transformation field 
back into the contact impression), and to other sys- 
tems. Examples of this latter include crack initiation in 
softer materials, such as ionic solids or semiconduc- 
tors in which the compressive zone of a dislocation 
array may surround the contact impression, or spon- 
taneous microcracking in inhomogeneous microstruc- 
tures in which a compensating shield of compressive 
grains may surround the initiating tensile grain. 
Another obvious extension is the superposition of 
a uniform tensile field, in order to describe the behavi- 
our of trapped cracks in components under stress 
[28]. 
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Figure 18 A plot of indentation transformation-zone size, B, versus 
steady-state toughness T~ for zirconia materials. The open symbols 
are direct experimental observations ((�9 Y TZP, ('~) Ce-TZP, 
(A) Mg-PSZ) and ( - - )  is a best fit to these data. (0) Results 
inferred from the indentation trapping model fits to crack-length 
measurements (Y-TZP). 
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